One-Class Multiple Instance Learning and Applications to Target Tracking
نویسندگان
چکیده
Existing work in the field of Multiple Instance Learning (MIL) have only looked at the standard two-class problem assuming both positive and negative bags are available. In this work, we propose the first analysis of the one-class version of MIL problem where one is only provided input data in the form of positive bags. We also propose an SVM-based formulation to solve this problem setting. To make the approach computationally tractable we further develop a iterative heuristic algorithm using instance priors. We demonstrate the validity of our approach with synthetic data and compare it with the two-class approach. While previous work in target tracking using MIL have made certain run-time assumptions (such as motion) to address the problem, we generalize the approach and demonstrate the applicability of our work to this problem domain. We develop a scene prior modeling technique to obtain foreground-background priors to aid our one-class MIL algorithm and demonstrate its performance on standard tracking sequences.
منابع مشابه
Multiple Target Tracking With a 2-D Radar Using the JPDAF Algorithm and Combined Motion Model
Multiple target tracking (MTT) is taken into account as one of the most important topics in tracking targets with radars. In this paper, the MTT problem is used for estimating the position of multiple targets when a 2-D radar is employed to gather measurements. To do so, the Joint Probabilistic Data Association Filter (JPDAF) approach is applied to tracking the position of multiple targets. To ...
متن کاملMIForests: Multiple-Instance Learning with Randomized Trees
Multiple-instance learning (MIL) allows for training classifiers from ambiguously labeled data. In computer vision, this learning paradigm has been recently used in many applications such as object classification, detection and tracking. This paper presents a novel multipleinstance learning algorithm for randomized trees called MIForests. Randomized trees are fast, inherently parallel and multi...
متن کاملReal-Time Multi-scale Tracking via Online RGB-D Multiple Instance Learning
It is still a challenging problem to develop robust target tracking algorithm under various environments. Most of current target tracking algorithms are able to track objects well in controlled environments, but they usually fail in significant variation of the target’s scale, pose and plane rotation. One reason for such failure is that these object tracking algorithms employ fixed-size trackin...
متن کاملResearch of multiple-instance learning for target recognition and tracking
Target recognition and tracking is a hot research in image and video processing and is widely used in motion analysis, behavior recognition, and so on. In this paper, we studied target recognition and tracking in a series of images, and our approach is based on the multiple-instance learning technique. Firstly, we present a general target tracking framework. Within the proposed framework, we us...
متن کاملA Gravitational Search Algorithm-Based Single-Center of Mass Flocking Control for Tracking Single and Multiple Dynamic Targets for Parabolic Trajectories in Mobile Sensor Networks
Developing optimal flocking control procedure is an essential problem in mobile sensor networks (MSNs). Furthermore, finding the parameters such that the sensors can reach to the target in an appropriate time is an important issue. This paper offers an optimization approach based on metaheuristic methods for flocking control in MSNs to follow a target. We develop a non-differentiable optimizati...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012